Radiolysis Process for the Regeneration of Sodium Borate to Sodium Borohydride

Dr. Dennis Bingham Kraig Wendt Bruce Wilding

Idaho National Engineering and Environmental Laboratory

May 25-26, 2004

This presentation does not contain any proprietary or confidential information.

Objectives:

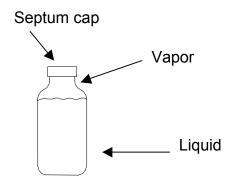
Develop a viable method for regenerating sodium borohydride from sodium borate, to meet DOE's fuel cost target of \$1.50/kg H₂.

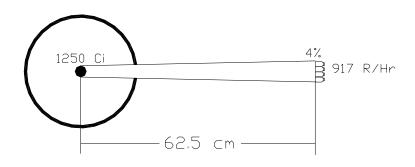
- Demonstrate radiological methods of converting borate to borohydride
- Validate earlier observations, outcomes, and results
- Initiate processes for identifying, qualifying and quantifying conversion mechanisms
- Estimate production capability of process

Targets and Barriers

- DOE Technical Barriers for Chemical Hydride Storage Systems
 - A Cost
 - C Efficiency
 - G Life Cycle and Efficiency Analysis
 - Q Regeneration Processes for Irreversible Systems
 - R By-Product Removal
- DOE Technical Targets for Chemical Hydride Storage Systems for 2010
 - Fuel Cost \$1.50 per gasoline gallon equivalent

Procedure


- Radioactive sources used (Cs¹³⁷,Co⁶⁰,Sr⁹⁰,X-ray)
- Both Tetraborate and Metaborate tested at controlled concentrations


TetraborateNa₂B₄O₇

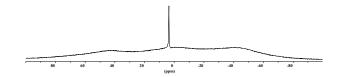
Metaborate NaBO₂

- DI water sample used for baseline comparison
- Vapor space sampling of converted hydrogen
- NMR and XRD analysis
- 1,3,4,7,14, and 20 day samples tested thus far

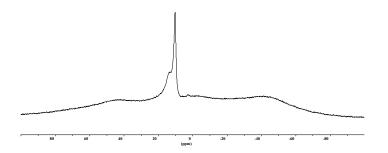
Challenges

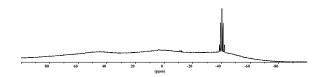
- Very little information is known about borate radiochemistry mechanisms and reactions
- Limiting borate solubility's in water
- Limiting detection methods for discriminating converted borohydride (analytical issues)
- Aqueous stabilization issues of borohydride (prevent back reaction to borate)

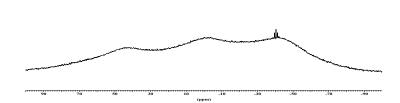
Project Safety


- Safety Analysis Processes
 - Independent Hazard Review Process
 - Environmental Checklist
- Hazards Identified
 - Chemical hazards (mitigate by using proper PPE)
 - Hydrogen gas and air mixtures
 - Pressure building in bottles due to the release of Hydrogen and Oxygen (mitigate by controlling sample size)
 - Radiation exposure (technical, facility, and security processes to minimize radiation exposure)

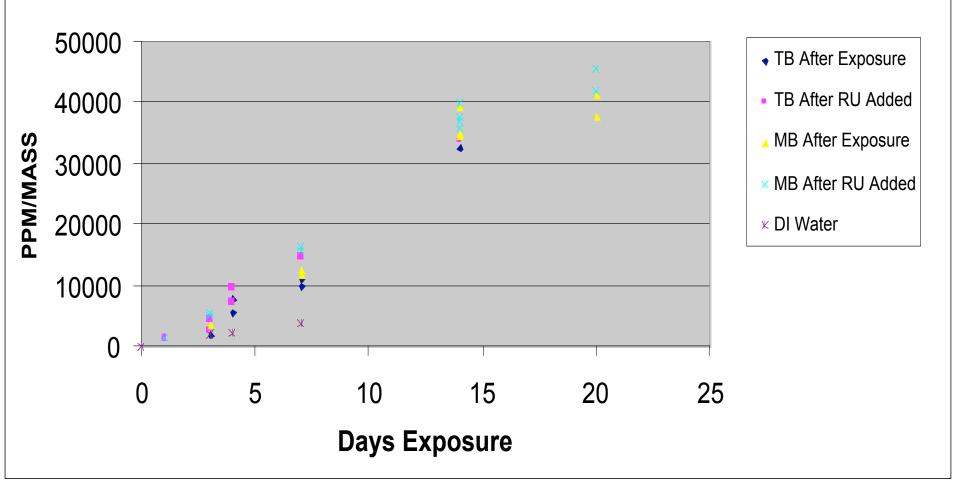
Technical Accomplishments


- Duplicated FY02 tests in Jan and Mar/Apr 2004 (5 times equivalent hydrogen production quantified)
- Duplicated the ability to generate hydrogen from borate solution (3 times in CY04 obtained the same yield efficiency)
- Developing analytical method/process
- Quantified absorbed radioactive energy
- Have some indication analytically of the possibility of borate to borohydride generation
- Vary parameters to increase ability to detect borohydride (e.g., nmr, x-ray diffraction)
 - Use solid or paste borate material
 - Use more radioactive energy per time
 - Work to provide stabilized aqueous solution for borohydride
 - Dehydrate borate/borohydride solution
- Radiolysis of borate showed 53% conversion efficiency


NMR Spectra of Control and Actual Samples


BNMR (sodium borate - control sample)

¹¹B NMR (sodium borate peak)



BNMR (sodium borohydride – control sample)

¹¹B NMR (sodium borohydride peak)

Hydrogen Production from Borate Conversion

Radioactive Waste Energy Rough Estimates

Commercial Reactor Waste

- Commercial power plants produce 7.52E9 Ci/yr-reactor waste Approximately 103 reactors in the U.S. that have been running for 25 years.
- Spent waste is being removed from the reactors every 18 months
- Assuming new waste replaces waste with low decay rates and using an average 2.28E8 Ci/yr-reactor.
 - Borate to borohydride conversion requires 1440 kJ/mole
 - 325 M kg/yr Hydrogen produced per year
 - At \$1.50/kg Hydrogen production creates \$486 M per year
 - Reclassifies waste into a usable product

Commercial Reactor Radiation

- Utilizing 10% of the available radiation in a commercial reactor
- 1.0 B kg/yr of Hydrogen produced per reactor

Interactions and Collaborations

Millennium Cell

Discussed radiation concepts and conversion rates

Collaboration on the use of ruthenium

Idaho State University

Radiation measurement to verify amount absorbed

Analysis of chemical reactions

Technical Team's Comments and Resolutions

- Verify identification of borohydride (e.g., nmr, x-ray diffraction)
- Verify 53% conversion
- Determine mass and energy balances
- Investigate methods to eliminate or greatly reduce aqueous back reaction of borohydride
- Continue to provide more data

Future Work

- Continue investigating methods of improving efficiency and yield
- Identify methods to control back reactions of borohydride
- Quantify the impact of different radiation sources
- Investigate the impact of catalysts
- Qualify conversion mechanism
- Applicability of this process to other chemistries

INEEL Project Team

•	Bruce Wilding	Sr Advisory Engineer	208-526-8160	wilding@inel.gov
•	*Dr. Dennis Bingham	Consulting Engineer	208-526-3452	bingdn@inel.gov
•	*Kraig Wendt	Advisory Engineer	208-526-3860	wendkm1@inel.gov
•	Kerry Klingler	Advisory Engineer	208-526-4516	klinkm@inel.gov
•	Thor Zollingler	Advisory Engineer	208-526-3484	zollwt@inel.gov
•	Troy Tranter	Sr Advisory Engineer	208-526-5447	ttranter@inel.gov

* Presenters